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Executive Summary 
Comprehensive lead-acid and lithium-ion battery models have been integrated with photovoltaic 
models giving System Advisor Model (SAM) the ability to predict the performance and 
economic benefit of behind the meter energy storage. In a system with storage, excess PV energy 
can be saved until later in the day when PV production has fallen, or until times of peak demand 
when it is more valuable. Complex dispatch strategies can be developed to leverage storage to 
reduce energy consumption or power demand based on the utility rate structure. This document 
describes the details of the battery performance and economic models in SAM. 
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1 Introduction 
SAM [1] links a high temporal resolution quasi-steady state PV-coupled battery energy storage 
performance model to detailed financial models to predict the economic performance of a 
system. The model was validated against existing models as well as physical testing of off-the-
shelf battery equipment. A future paper will present case studies of systems with high 
penetrations of PV with and without distributed energy storage (DES) to evaluate the economic 
benefit of adding storage. Several performance sub-models of battery behavior had to be 
coherently integrated to provide a sufficiently realistic yet general interface for users of any type 
of lead-acid and lithium-ion battery. These models include a capacity model, voltage model, 
thermal model, and a lifetime model. Sensible dispatch strategies also had to be accommodated 
to allow users sufficient latitude in selecting how to use stored energy.  Of primary importance is 
that users of the tool can find input parameters to the models on typical battery datasheets.  The 
combined storage performance and dispatch models offer significant new capabilities to SAM 
which will assist interested parties with planning and evaluation of PV coupled with storage 
systems.   

Ample literature is available describing mathematical battery models of varying complexity and 
scope.  Battery models can be classified depending on the modeling approach. Bulk 
electrochemical models are well-suited to the purposes of SAM and typically can be 
characterized from the information on battery data sheets.  These models seek only to describe 
aggregate quantities such as terminal voltage and battery charge. 

Before describing the models chosen, it is worth commenting briefly on other types of battery 
models that were considered. Molecular level physics based electrochemical models provide a 
high level of fidelity but are unsuitable for the application due to their highly detailed input and 
runtime requirements. Empirical models, such as that developed for lead-acid batteries by 
Copetti [1] were not used due to their lack of generality.  Other high level model types have been 
developed to characterize battery performance but suffer from requiring inputs not typically 
available on data sheets.  Multiple types of battery chemistry beyond lithium-ion and lead-acid 
are under development or active in the market place [2], but are not considered here. 

Common bulk electrochemical models are often based on work of Peukert [3], who modeled the 
relation between discharge current and capacity; and Shepard [4], who described the terminal 
voltage as a function of current, capacity, and charge state.  For SAM the phenomenological 
approach of Manwell [5] was chosen to model the transient capacity and charge-transfer process 
in lead-acid systems. Lithium-ion batteries can charge and discharge more rapidly than lead-acid 
systems, and to model capacity in these batteries a simple tank-of-charge model was derived.  
Tremblay [6] extended the work of Shepard to provide a general dynamic voltage model across 
multiple battery chemistries, and was chosen to characterize terminal voltage for both chemistry 
types in SAM.  The rainflow counting method described by Downing [7] is used to count battery 
charge/discharge cycles and coupled with manufacturer provided degradation curves permits an 
estimation of cycling capacity fade. Neubauer [8] described a thermal model for electric-vehicle 
batteries considering thermal radiation and cabin heat-transfer, which informed derivation of a 
simple heat-transfer model to predict battery temperature.  Finally, a simple dispatch model was 
developed to provide a user with several options for how to effectively leverage their battery 
system. 
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SAM currently assumes the battery is AC connected through a power converter, that is, it is in 
parallel with the load, grid, and PV system.  The power conversion is approximated by two 
single point efficiencies, one upon power entering the battery for charging, and one as power 
leaves the battery for discharging.  The efficiencies are applied to the current as in equation (1). 
 
 =  (1) 
 =   
 
The charging efficiency is referred to as AC to DC efficiency, with the assumption that power is 
coming from an AC source.  The discharging efficiency is referred to as DC to AC efficiency, 
with the assumption that DC power must be reinverted to meet an AC load.  Other configurations 
exist, such as where power flows to the battery from a DC source (PV array) through one or two 
charge controllers, or power comes from an AC source, is inverted, and then sent through a 
charge controller to the battery.  Figure 1 illustrates the modeled configuration. 

 
Figure 1: Modeled configuration 

Battery bank sizing can be done automatically by specifying desired bank capacity, voltage, cell 
capacity and voltage.  Alternatively, a user can build a custom bank by defining how many cells 
should be connected in series and how many additional cells should be added in parallel.  Cells 
added in parallel must be added in strings to maintain bank voltage.  Figure 2 shows a battery 
with three parallel strings of four cells in series.  As cells are added in series, bank voltage 
increases; as strings are added in parallel, capacity increases. 

 
Figure 2: Example cell configuration 
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2 Generic Performance Models 
This section will describe performance models that are common to lead-acid and lithium-ion 
battery chemistries.  Specifically, a general voltage model, thermal model and cycle counting 
method will be detailed. 

2. 1 Voltage Model 
Battery terminal voltage varies as a function of current, capacity, state-of-charge, and other 
factors requiring a dynamic model to characterize the voltage at a given time.  The voltage model 
does not consider temperature effects as manufacturer data sheets do not commonly list voltage-
vs-temperature information.  The voltage model indirectly incorporates temperature effects 
through the battery capacity, which is coupled with the thermal model.  The model treats 
charging and discharging modes in the same way. The dynamic voltage model is a generic 
electrochemical model based on [6]. Model parameters are based on extracted parameters from 
battery datasheets.  The voltage model is given by Equation (1) and Table 1. 

 
= +  

(2) 

Table 1: Voltage model variables 

Variable Description 
 Terminal voltage (V) 
 Battery constant voltage (V) 
 Polarization voltage (V) 

 Battery capacity (Ah) 
 Actual battery charge (Ah) 
 Exponential zone amplitude (V) 
 Exponential zone time constant inverse (Ah)-1 

 Internal resistance ( ) 
 Battery current (A) 
 Time step (hr) 

 
 is an expression for how much capacity has been removed and can be computed as in 

Equation (2). 
 
 =  (3) 

 
V0, K, a, and B are parameters from manufacturer voltage vs. charge-removed curves.   
 
2.1.1 Parameter determination 
A voltage discharge curve for a battery cell must be used to determine the constants required by 
the voltage model as described in [6].  
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Figure 3: Voltage vs. discharge curve 

 
Quantities which need to be extracted are listed in Table 2. 

Table 2: Voltage model parameters 

Variable Description 
 The fully charged cell capacity (Ah) 

,% The percent of   that has been removed at the end of the exponential zone (%) 
,% The percent of   that has been removed at the end of the nominal zone (%) 
 The fully charged voltage (V) 
 The voltage at the end of the exponential zone (V) 
 The voltage at the end of the nominal zone (V) 

 
To determine the amount of charge removed at any particular point, one must know the C-rate of 
the discharge curve, which is a measure of current relative to the battery capacity.  Specifically, 
the C-rate is defined as the current divided by the rated capacity at that current.  Thus, if the 
current used to generate the discharge curve is the 20-hour discharge rate current, the 
corresponding C-rate would be C/20, or 0.05C.  Once one knows the current, charge removed is 
easily computed as: 

 =  (4) 
 =  (5) 
 

,% = 100  (6) 
 

 
,% = 100  (7) 

 
 

With the quantities from Table 2, parameters can be computed as:  
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 =   (8) 
 

 =
3

 
(9) 

 
 

=
+ ( 1) ( )

 
(10) 

 

 = + +  (11) 
 
2.1.2 Model limitations 
The voltage model attempts to describe a voltage discharge curve over a wide range of charge 
states, including the portion of the voltage curve which is highly non-linear.  At regions of very 
low state-of-charge (less than 1%), the model becomes undefined.  If the battery is simulated 
allowing extremely low states-of-charge and the voltage becomes negative or undefined the 
model will return the voltage value as half the nominal voltage.  Furthermore, if the battery is 
overcharged and terminal voltage exceeds the full cell voltage by more than 125%, the voltage 
will be limited to the full cell voltage.  These limits are arbitrary and exist solely to avoid 
undefined behavior. 

2.1.3 Voltage losses 
Voltage losses are losses associated with charging and discharging resulting from differences in 
charging and discharging voltage.  The dynamic voltage model described above computes 
terminal voltage as a function of current and state-of-charge.  As a battery charges the terminal 
voltage increases, requiring more power to charge.  As a battery discharges, the terminal voltage 
decreases such that at a fixed current the amount of power which can be extracted decreases.  
This is illustrated by Figure 4. 

 
Figure 4: Voltage variation with current and state of charge 

The cell voltage and current flow of a lithium-ion battery are shown in the left plot, while the 
state of charge is shown on the right.  For negative currents (battery charging), the battery 
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voltage increases.  For positive currents (battery discharging), the cell voltage decreases.  As the 
figure demonstrates, more energy is required to charge from 30% SOC to 80% SOC than can be 
extracted over the same range.  This leads to the concept of round-trip efficiency. 

2.1.4 Round-trip efficiency 
At every time step, the energy sent to charge the battery or energy discharged from the battery is 
recorded.  The efficiency is the total amount of energy discharged over all timesteps divided by 
the total amount of energy required to charge over all timesteps. The energy is computed after all 
losses are applied by computing: 

 = 0.5 ( + )  (12) 
 
Where I is the current,  is the voltage at the end of the timestep, and  is the voltage at the 
beginning of the timestep.  If E is greater than 0, the energy over the timestep is added to , the 
accumulated energy discharged. If E is less than 0, the energy over the timestep is added to , 
the accumulated energy charged.  At the end of the simulation, the round-trip efficiency is 
computed as in Equation (12). 

 = 100 ( ) (13) 

 
This efficiency is sensitive to the average charging and discharging current.  As this average 
increases, thermal losses increase and reduce the efficiency.   

2.2 Thermal Model 
Thermal effects are important to battery performance, because the battery temperature directly 
affects its capacity and lifetime.  Typically, battery capacity drops as the temperature decreases 
and increases as temperature increases.  Excessively high temperatures result in corrosion and a 
significant reduction in lifetime.  Therefore accurate representation of quantities of economic 
importance requires effective modeling of battery temperature.   Many system configurations are 
possible; however, only a simple scenario where the battery is placed in a conditioned room of 
fixed temperature is considered. More general scenarios involve configurations exposing the 
battery to ambient weather conditions, which may result in suboptimal performance and lifetime.  
The system configuration studied is seen in Figure 5 . 



7 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

 
Figure 5: Thermal model system configuration 

 
The user can specify several properties describing the thermal characteristics of the battery.  The 
model is an energy balance of thermal storage within the battery, heat transfer to and from the 
room, and heat generation due to internal resistance.  The differential equation describing the 
heat transfer was derived from an energy balance on the battery system.  The quantity of interest 
is the battery temperature.  No incident radiation is considered. 

 
( ) =  =

( ) +
 

(14) 

 
To mitigate stability issues, the second-order, unconditionally stable trapezoidal method is used 
to numerically step the temperature forward in time.  The implicit method takes the form: 

 
, =  , +

2
[ , + ( , )] (15) 

 
The output of the thermal model is the bulk average temperature of the battery, which is then 
used to compute the relative capacity based on a lookup table of relative capacity with 
temperature.  Thermal effects on battery lifetime are not considered.  The current discharge and 
charge rate are the primary terms influencing thermal losses and battery efficiency.  To improve 
battery efficiency, the user can tailor the maximum current rates to reduce thermal losses.  
Without limiting current discharge battery efficiency will noticeably decrease, particularly at 
sub-hourly time-steps.  Battery mass and surface area are input as units per energy, so that 
adjusting the size of the battery bank results in dynamic scaling of mass and area. 

The user enters information about capacity versus temperature to apply thermal losses.  Losses 
are applied to the amount of charge in the battery.   The capacity modifier  is a percent of how 
much loss applies at a given temperature.  The loss is applied to the capacity as:  

 = 0.01  (16) 
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2.3 Lifetime Model 
Lithium-ion and lead-acid batteries have calendar and cycle-dependent characteristics. Lead-acid 
battery data sheets typically report capacity degradation, depending on how many cycles have 
elapsed at an average depth-of-discharge (DoD), whereas lithium-ion battery data sheets often 
report the capacity degradation at a given number of cycles.  To track the number of cycles that a 
battery has undergone, a rainflow counting algorithm [7] is applied.  This provides a means to 
distill a complex, irregular discharge history into a series of constant amplitude events.   

Academic battery literature has typically considered a battery degraded to the point of needing 
replacement upon being able to provide only 80% of its original capacity [9], though SAM 
permits users to enter a custom percent at which to replace the battery or a replacement schedule.  
To compute capacity degradation, a user inputs an array of cycle numbers and another array of 
corresponding relative capacity percentages.  For instance, if a battery has been tested by 
performing cycling tests at a DoD of 20% and another series of tests has been done by cycling to 
an average DoD of 80%, the example information in Table 3 could be entered. 

Table 3: Example Lifetime Inputs 

Depth of Discharge (%) Cycle Elapsed Maximum capacity relative to 
initial maximum (%) 

20 0 100 
20 650 96 
20 1500 87 
80 0 100 
80 150 96 
80 300 87 

 
At an average DoD of 20%, after 650 cycles have elapsed the maximum battery capacity has 
degraded to 96% of its original value.  So a battery with a maximum of 100 Ah will be reduced 
to a maximum of 96 Ah in this example. 

If comprehensive cycling information is not available, the user should ensure that all entries in 
the depth-of-discharge column are the same, though this may provide undesirable degradation 
behavior as all modeled cycles will cause the same capacity degradation to be applied regardless 
of the average DoD.  An alternative may be to apply a rule-of-thumb to generate additional data 
points.  For instance, if a battery data sheet only reports degradation at one DoD, assumptions 
about a second data point will be needed.  The manufacturer may not report any information 
about what DoD was used in the test, requiring an initial baseline assumption.  Table 3 was 
constructed using this assumption process.  No information was provided other than capacity 
degradation with cycle number, prompting the assumption that the DoD for the curve was 80%.  
The assumption was then made that at low DoD, more cycles can elapse before reaching the 
same capacity degradation.  In Table 3, the number of cycles at 20% DoD was generated by 
multiplying the number of cycles at 80% by five for the same capacity degradation.  The lifetime 
estimates generated using this method are only approximations.  For more accurate estimates, 
detailed lifetime data should be obtained from the manufacturer if available. 
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Using the cycle-counting method described previously, the relative capacity percent is 
determined by interpolating the curve at the current cycle number and average cycle depth-of-
discharge and applied to modify the maximum capacity. Lifetime losses are only applied when a 
new cycle has elapsed. The following equation illustrates the loss applied, where  is the 
capacity relative to the original maximum entered by the user. 

 = , 0.01  (17) 
 
If the new maximum capacity is less than the charge currently in the battery, the battery charge is 
reduced to the new maximum.   
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3 Lead Acid Performance Models 
3. 1 Capacity Model 
Lead-acid batteries exhibit certain characteristics which distinguish them from other batteries.  

One characteristic of lead-acid batteries is that some of the charge is chemically-bounded at any 
time and must become available before use.  The Kinetic Battery Model (KiBaM) [5] seeks to 
describe the interplay between bound and available capacity.  At any time, the available charge 
and bound charge can be computed: 

 
= , +

( )(1 ) ( 1 + )
 

(18) 
 

 
= , + (1 )(1 )

(1 )( 1 + )
 

(19) 
 

 = +  (20) 
 
Quantities not previously described are detailed in Table 4.  This model assumes the convention 
that positive current indicates discharging the battery, while negative current indicates battery 
charging. 

Table 4: Lead-acid capacity variables 

Variable 
Name 

Description 

 Available charge (Ah) 
 Bound charge (Ah) 

,  Available charge at beginning of timestep (Ah) 
,  Bound charge at beginning of timestep (Ah) 
 Rate constant (h-1) 
 Capacity ratio 

 
3.1.1 Parameter determination 
In order to determine c and k, quantities from the battery data sheet are required.  The capacities 
at three different discharge rates are used to compute the constants.  SAM requires the user to 
choose between three different lead acid chemistries (Flooded, Valve Regulated Gel or Valve 
Regulated Absorbed Glass Mat) and specify the full cell capacity, which is assumed to be the 20-
hour rate.  With these inputs, the model provides default parameters for the 10-hour capacity, and 
1-hour capacity based upon average quantities determined from multiple batteries in the 
HOMER database [10] and publically available datasheets. Then, the following ratios are 
computed: 

 
, = , ,  (21) 

 
Given these two ratios, it is possible to compute corresponding  and  values.   
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=

(1 ) (1 )
(1 ) (1 ) +

 
(22) 

 
When the same  is obtained for a given  at two different discharge rates (compute  once with 

= , , the next time with = , ), then that  and  are the ones to use.  Once those 
quantities are determined, the theoretical maximum battery capacity can be estimated using a 
reasonably slow discharge rate, such as the 20-hour discharge rate: 
 
 

=
{(1 )(1 ) + 20 }

20
 

(23) 

 
3.1.2 Charge transfer 
The charge transfer model for a lead-acid battery requires consideration of the maximum charge 
and discharge current.  The dispatch controller indicates how much power should be removed or 
added to the battery through the variable   If the power is positive, power is being discharged, 
and the current is computed as: 
 = min , ,  (24) 

 
Similarly, if the power is negative, the battery is charging and the current is: 
 
 = min (| |, | , |) (25) 

 
Where the maximum charge and discharge currents are given by: 
 
 

, = , + (1 )
1 + ( 1 + )

 
(26) 

 
 

, =
+ , + (1 )

1 + ( 1 + )
 

(27) 

 
The time-steps required by the equation are the simulation time-step in hours. 
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4 Lithium-ion Performance Models 
Lithium-ion batteries are capable of discharging more rapidly and deeply than lead-acid 
batteries, making the capacity model substantially different.   
 
4.1 Default Chemistries 
A set of lithium-ion cell types are included to populate typical voltage curve and lifetime 
degradation defaults. [2]  Default values are provided for the following lithium-ion cathodes 
coupled with a graphite or hard carbon anode: Nickel Manganese Cobalt Oxide (NMC), Nickel 
Cobalt Aluminum Oxide (NCA), Lithium Manganese Oxide (LMO), Lithium Iron Phosphate 
(LFP), Lithium Cobalt Oxide (LCO).  Defaults are also provided for LMO as a cathode and 
Lithium Titanate (LTO) as an anode.  Changing between lithium-ion chemistry types simply 
changes default values in the user interface and does not change underlying equations.  Cells 
properties can vary markedly between manufacturers and product lines such that the default 
values do not capture the properties of a particular cell.  The user is encouraged to use the 
defaults as a starting point and tailor model inputs as needed.   
 
4.2 Capacity Model 
The lithium-ion capacity model treats the battery as a tank of charge, removing and adding 
charge as needed according to the following relation, again assuming that positive current 
implies discharging from the battery. 
 =  (28) 
 
The battery is only allowed to discharge to the user-specified minimum state-of-charge and stays 
within user-specified rates of current charge and discharge.  Capacity relates to battery energy 
through the voltage. 
 =  (29) 
 
Power relates to battery energy by calculating how much energy is transferred over a period of 
time. 
 = = =  

(30) 

 
The model computes voltage according to (2), which utilizes a static resistance. 
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5 Storage Dispatch 
SAM currently allows for a manual dispatch strategy, where the user can set up custom profiles 
and then schedule those profiles on a month by month, hour by hour schedule throughout the 
year.  This tool allows the user to specify detailed characteristics, such as when to allow 
discharging, how much of the capacity to discharge, and the minimum state-of-charge.  With 
these detailed options, the user can choose how to dispatch storage in the hours offering the most 
benefit.  

 
Figure 6: Battery dispatch inputs 

Figure 6 illustrates a dispatch strategy for an electricity market with time-of-use rates having 
cheaper prices in the middle of the night, and higher rates during the morning and afternoon 
peaks, where the simulation time step is assumed to be one hour.  Period 1 has been set-up to 
only allow charging of the battery from the PV array.  Period 2 has been set to allow charging 
from the PV array and to force charging from the grid.  Note that profile two is set for early 
morning hours when purchasing electricity from the grid is cheaper under the time-of-use 
scenario.  Period 3 has been set to allow the battery to charge from excess PV energy, and to 
discharge to meet the load if the load exceeds PV production.  This profile allows 25% of the 
available capacity to be used every hour, which covers a four-hour evening period.  Finally, 
period 4 matches period 3, but with a different allowance on how much energy to discharge 
every hour. This period allows 50% of the available capacity to be used every hour, which covers 
the two-hour period.  The battery dispatch schedule shows that the battery is only allowed to 
discharge during typical peak usage hours.  The schedule and profiles can be adjusted to fit 
custom scenarios.  

Note that for sub-hourly time-steps the same dispatch inputs are provided; however, the “% 
capacity to discharge” input refers to each time step, not the entire hour.  For example, in a 
simulation running at one-minute time steps, the current settings for period 4 would allow 50% 
discharge of capacity per minute, provided other constraints (maximum power output) were not 
violated.  To provide uniform output over two hours, the percent would have to be changed to 
50%/60 (0 .833%). Due to variations in load and PV-production, it is possible that the demand 
on the battery will not reach the capacity threshold at every time step, whereas for other time 
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steps the demand may exceed the threshold, leading to under-utilization of the battery.  At sub-
hourly time steps it may thus be desirable to double or quadruple the discharge percent to allow 
for variations in battery demand with the understanding that this will allow more of the battery 
capacity to be used (up to the minimum state-of-charge), but may also result in the battery not 
contributing energy during later portions of the period. 

 
Figure 7: Percent Capacity to Discharge Controller 

To illustrate how the “% capacity to discharge” controller works, Figure 7 shows the charge 
state of the battery over a two day simulation period using hourly time-steps for the dispatch 
strategy seen in Figure 6.  The dispatch strategy limits the state-of-charge to 30%.  It is clear that 
on both days that from 6 am to 7 am, half the available capacity is discharged, while the rest is 
discharged from 7 am to 8 am, at which point the minimum state-of-charge is reached.  This time 
corresponds to period 4, which allows 50% discharge of available energy at each time step.  
From 6 pm to 9 pm, the battery discharges 25% of available energy at each time step, resulting in 
a state-of-charge of 30% at 9 pm.  The controller is meant to provide a flexible way to manage 
the dispatch strategy to meet portions of the load over an extended period of time rather than 
always fully discharging to meet the load during one period. 

Another alternative control option is grid recharge mode, where the controller can be specified to 
recharge the battery after a discharge event.  If Charge from grid and Allow Discharging are both 
selected in a profile, the controller will discharge the battery to meet the load up to the minimum 
state-of-charge, and then charge the battery from the grid up to the maximum state-of-charge or 
until reaching a period where grid charging is disallowed. 
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5.1 Algorithm description 
Figure 8 illustrates how the dispatch controller decides to charge or discharge the battery. 
 

 
Figure 8: Dispatch control strategy 

 

The dispatch algorithm first computes how much energy is needed to fully charge the battery and 
how much energy is currently in the battery based on information from the last time step.  The 
energy from the PV system is compared against the energy required to meet the load.  If the PV 
energy exceeds the load and the battery is allowed to charge from PV, as much excess energy as 
possible is dumped into the battery.  If the battery is still not full and is allowed to charge from 
the grid, it will draw any additional needed power from the grid. If the battery is not allowed to 
charge from the PV array but is allowed to charge from the grid, it will fully charge from the 
grid. 

If the PV energy does not exceed the load and the battery is allowed to discharge, as much 
energy as possible is discharged to meet the load.  If grid charging is also allowed, the battery 
will recharge from the grid upon reaching its minimum state-of-charge.  If the battery is not 
allowed to discharge to meet the load, but is allowed to grid charge, it will recharge from the 
grid. 
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5.2 State-of-Charge Controller 
The user must input the minimum state-of-charge desired in the battery bank.  This minimum 
allows the user to protect their battery from harmful deep-cycle events which may hasten 
degradation and force replacement.  The controller is implemented by computing: 

 , = [ 0.01]    
 

(31) 

The battery is then only allowed to discharge up to that amount of energy.  This equation results 
from considering that the state-of-charge at the end of the time step is equal to the difference in 
the charge at the beginning of the time minus the amount of charge removed over the time 
divided by the maximum charge. 

  % = 100 (32) 

 
Similarly the user may input a maximum SOC level to restrict battery charge from exceeding a 
certain percent.  The maximum energy allowed to charge the battery during a time step is 
computed as: 

 , = [ 0.01] 
 

(33) 

The state-of-charge controller also computes how much energy to discharge based on the 
dispatch controller limitation for the current profile.  For instance, in Figure 6, profile four allows 
discharge of 50% of the battery capacity per time step, which in this case is assumed to be one 
hour.  Considering p as the percent per time step input by the user, the maximum energy allowed 
to discharge can be computed from: 

 
 = 100 ,

,
 

(34) 

5.3 Switching Controller 
At short (one minute) time steps, it is possible that the PV production will alternate from being 
greater than to less than the load on a minute-by-minute basis during some hours of the day.  
This behavior could lead to the battery charging one minute and discharging the next minute.  
This behavior could be undesirable because it rapidly increases the number of cycles elapsed on 
the battery.  To prevent rapid charging/discharging oscillations, the user inputs the minimum 
time allowed at each charge state before switching.   

5.4 Current Controller 
Batteries have limitations on how much current can be used to charge or discharge, and 
excessive current levels may also result in undesirable thermal losses and lower efficiency.  The 
current controller requires the user to enter the upper charge and discharge C-rates for the battery 
bank.  Before allowing charging or discharging, the controller checks the current and adjusts it if 
needed.  Some battery manufacturers specify maximum power throughput rather than current.  
For these batteries, the maximum C-rate can be estimated by converting the power restraint to 
current via the nominal voltage. 
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6 Battery Economics 
SAM includes a powerful new feature which allows simulation over the entire analysis period 
rather than extending the first-year analysis to future years.  The feature was introduced to 
capture the variable nature of battery replacements, which depend heavily on their cycling 
behavior.  As a battery degrades beyond a certain point, its use as a stationary storage device 
becomes limited and the battery must be replaced.  This introduces potentially large capital 
replacement costs into the financial analysis which must be considered to evaluate the economic 
impact of adding batteries to a system over the system lifetime.   

Users can specify whether to replace the battery and at what capacity degradation percent the 
battery should be replaced.  Alternatively a user can enter a replacement schedule which details 
in which years the battery bank should be replaced.  In addition, battery bank replacement costs 
can be entered either as a fixed $/kWh value, or as a schedule over time.  Escalation costs can be 
input to explore increasing or decreasing battery costs relative to inflation over time. 

Figure 9 illustrates a scenario where lithium-ion battery maximum capacity fades from 100% to 
20% over the course of about 10 years, at which point the battery is replaced.  Upon replacement, 
maximum battery capacity is reset to 100% and an additional capital cost is incurred.   Over 25 
years the battery is replaced twice. 

 
Figure 9: Battery capacity fade over 25 years 
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6. 1 Financial Analysis 
A major consideration for installation of battery systems is whether they can provide enough 
economic benefit to offset their initial and potential replacement costs.   SAM currently only 
considers behind the meter distributed storage for residential and commercial markets.   A macro 
is available specifically tailored to evaluate battery financials.  Figure 10 illustrates the battery 
macro results for an optimistic time-of-use tiered rate scenario where the buy rate equals the sell 
rate over all tiers. 

 
Figure 10: Battery macro 

 
This scenario suggests that adding a battery to a PV system results in more energy charge 
savings (net sales) but introduces extra capital and replacement costs such that the installation is 
not economically viable.  The macro also performs a net-present value analysis to account for 
inflation and discount rates.  Financial outputs such as net metering, demand charges, and other 
advanced electric rate structures are considered.   
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7 Model Validation 
Several validation approaches were taken to ensure the component-level models behave as 
anticipated.  These approaches include comparing results with other software packages using 
similar models and comparing against experimental data.  The software packages considered do 
not provide thermal or lifetime modeling capabilities.  Experimental lifetime validation was not 
performed due to the prohibitive expense in performing lifetime cycling tests.   It is the user’s 
responsibility to specify the capacity fade with cycling at various depths of discharge, which the 
model then applies. 

7.1 HOMER comparison 
The HOMER Legacy tool (v2.28 beta) developed by HOMER Energy LLC provides the ability 
to model grid-connected renewable energy systems including lead-acid batteries and was used 
for comparison.  Newer versions of HOMER have since been developed and released, and this 
comparison refers only to results obtained by HOMER Legacy.  The HOMER Legacy lead-acid 
capacity model also uses KIBAM.  

The simulated system was placed in Phoenix, AZ.  Each model used the same load profile.  A 
Universal Power Group UBGC2 sealed lead-acid AGM battery was used for comparison.  There 
was difficulty in perfectly matching the dispatch profiles between models, as HOMER performs 
optimized dispatch based on specified criteria, whereas SAM dispatches based on user-specified 
schedules.  Despite these differences, the dispatch strategies were tailored to match as closely as 
possible.  The first comparison done used the full SAM battery model, including lifetime 
capacity fade, voltage, and thermal effects. The HOMER model appears to incorporate terminal 
voltage variation via an efficiency input within the battery, which was specified as 88%. 
HOMER does not include thermal modeling and does not appear to include lifetime capacity 
fade with cycling. 

Of particular interest for the comparison was how much energy each model predicted being sent 
to the battery from the PV system, and how much energy went from the battery to meet the 
electric load.  Of further interest was the charge state of the battery over time.  Table 5 shows the 
battery energy quantities for each model, including a model of SAM where some features have 
been turned off. 

Table 5: SAM vs. HOMER battery energy 

 SAM  
(Full Model) 

SAM  
(Reduced Model) 

HOMER 

Energy to charge battery (kWh) 297.20 393.17 383.59 
Energy discharged to load (kWh) 260.90 347.88 338.56 
Battery efficiency (%) 87.79 88.48 88.26 

 
The full SAM model predicts that less about 23% less energy goes to and from the battery 
compared to HOMER yet closely approximates the battery efficiency, computed from Eq. (12).  
The root-mean-square error (RMSE) for the battery SOC between the two models was 8.62%.  
The root mean square error was computed from Eq. (34). 
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= , ,   

(35) 

 
The RMSE and matching efficiencies suggest the full SAM model tracks HOMER relatively 
closely with differences primarily in the magnitude of charging.  These differences in magnitude 
can be explained by SAM’s detailed losses models, which reduce the amount of useful energy 
sent to and from the battery.  Figure 11 illustrates the close tracking of state-of-charge between 
models. 

 
Figure 11: HOMER and SAM comparison 

A second comparison was made by disabling the thermal and lifetime models within SAM 
(modify lifetime and thermal capacity variations to always be 100% regardless of temperature, 
cycle number, or depth-of-discharge).  Table 5 shows the reduced SAM model annual battery 
charging and discharging totals within 3% of HOMER.   

7.2 PV*SOL Comparison 
PV*SOL Expert [11] offers the capability to model a grid-connected photovoltaic system with 
battery storage.  The battery charge controller offers a detailed way to specify various charge 
states of the battery, including how long to charge in various modes, and how often to allow 
cycling of these charge modes.  The charge controller was specified to match the SAM manual 
dispatch control strategy as closely as possible, using the same location, load profile, PV 
modules, inverter, and battery.  The battery selected was one available in PV*SOL’s database, a 
Trojan Battery Company IND13-6V with a nominal capacity of 616Ah.  The location used was 
San Francisco, with PV nameplate capacity of 1.8 kWdc and 1.7 kWac of inverter capacity.  The 
battery state-of-charge, charge energy, and energy from battery to load were compared.  Figure 
12 shows battery state-of-charge predicted by each model over a set of summer days.  As the plot 
illustrates, charging behavior in PV*SOL was slightly different as the battery reached high and 
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low charge states.  SAM uses KIBAM’s maximum energy from Eq. (22) to compute the state-of-
charge, whereas PV*SOL uses the 10-hour discharge capacity.   

 
Figure 12: PV*SOL and SAM comparison 

Further metrics of interest include bulk energy transfer quantities predicted by each model. Table 
6 shows that key energy quantities differ by less than 5% between models, and in the case of net 
battery energy to the load, less than 1%.  SAM predicts that less PV energy goes towards 
charging the battery, which could be due to a difference in the charge controllers and the 
accounting of self-discharge done by PV*SOL.  Further, SAM uses a characteristic capacity-vs-
discharge curve depending on the lead-acid battery type (flooded, gel, AGM), whereas PV*SOL 
uses a manufacturer provided curve for each battery.   

Table 6: PV*SOL & SAM net energy transfers 

 Net PV Energy to 
Battery (kWh) 

Net Battery Energy to 
Load (kWh) 

Net Grid Energy 
to Load (kWh) 

SAM 728.19 654.60 3442.88 
PVSOL 763.04 652.63 3522.96 

Difference (%) 4.57 0.30 2.27 
 
7.3 Physical hardware controlled testing 
Experiments were completed using physical hardware testing for lead-acid and lithium-ion 
battery systems.  A series of matrix tests captured battery performance over various charge and 
discharge rates, while other tests ran realistic PV and load profiles in an attempt to compare 
battery dispatch against the simulated results for the same PV and load profile.  Three test 
profiles were constructed using minute-resolution load data from an instrumented home in Wheat 
Ridge, CO [12] and measured minute-resolution weather data from the National Renewable 
Energy Laboratory [13].  Figure 13 shows the three profiles. 
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Figure 13: Test profiles 

For each test, the dispatch controller was set to allow battery charging from the PV array if PV 
production exceeded the load and to allow discharging to meet the load if insufficient PV power 
was available.  The three test profiles are described in Table 7. 

Table 7: Test Profile Descriptions 

Profile Name Description 
Steady 
Oscillation 

No PV production, oscillating load.  Chosen to examine battery controller 
behavior while discharging to meet electric load. 

High Variability Gradually increasing PV production with variable load.  Chosen to examine 
battery control behavior with variable PV and load profiles. 

Afternoon Peak Gradually decreasing PV production with large load peaks.  Chosen to 
examine battery control behavior over representative late afternoon 
conditions. 

7.3.1 Lead Acid Results 
The lead acid system used in the hardware testing was an OutBack Radian Series 
Inverter/Charger coupled with a bank of Outback EnergyCell 200RE lead acid batteries [14]. 
Two strings of four batteries were placed in parallel to achieve a nominal bank voltage of 48V 
and 1-hour discharge capacity of 206Ah.  Table 8 details the battery bank configuration. 
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Table 8: Lead Acid System 

Battery OutBack EnergyCell 200RE 
Chemistry Valve Regulated Lead Acid (VRLA) 

Absorbed Glass Mat (AGM) 
Cells per unit 6 

Number of batteries 2 strings, 4 series per string (8 total) 
Nominal voltage 4 x 12 V (48V nominal) 
Bank Capacity 206 Ah (1 hour discharge rate) 
Bank Energy 9.888 kWh (1 hour discharge rate) 

 
Preset dispatch modes were chosen on the Outback system.  While the modes have general 
descriptions on their behavior, the precise algorithms underlying the implementation are 
unknown.  Hence, the simulation dispatch controller was tailored as closely as possible to match 
the descriptions and the test output.  Further, battery state-of-charge reported by Outback system 
over time was inconsistent with the battery size and current flow to/from the battery.  It is 
assumed that the state of charge reporting in the hardware is offset or adjusted such that reported 
0% to 100% SOC is over the cycle limits of the battery, protected on the low and high end from 
under or overcharging.  To make the SOC metric comparable to the simulation, the test SOC 
output was modified according to the following equations: 
 
 = 100

+
 (36) 

 = 0.01  (37) 
 
Several charge and discharge tests were performed at varying power levels. Figure 14 shows the 
comparison between test and simulation for a 3300 W discharge test.  The simulation closely 
tracks the test state-of-charge, resulting in an RMSE of less than 1%. 
 

  
Figure 14: Lead acid 3300 W discharge comparison 

 
For the three tests illustrated in Figure 13, comparisons were made between several output 
variables including state-of-charge, battery current, voltage and power.  These scenario tests 
were completed to evaluate the ability of the dispatch controller to mimic the behavior of 
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commercially available hardware. The inverter was set to “Mini-Grid Mode” in an effort to 
match the behaviors of the hardware and model dispatch controllers.   
 

 
Figure 15: Lead acid steady oscillation results 

 
Figure 16: Lead acid high variability results 

 
Figure 17: Lead acid afternoon peak 

comparison 

 
Figure 18: Lead acid temperature residuals 

 
Figure 15 through Figure 18 illustrate the comparison between experimental test results and 
SAM simulation results.  As the figures show, the battery state-of-charge is roughly 
approximated across the four-hour tests. Variations exist between battery current and voltage.  
The coupling of these two variables still results in close tracking of power to and from the 
battery over the comparison period.  Table 9 shows the RMSE between simulation and 
experimental results for each test. 
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Table 9: Root Mean Square Errors 

 State of Charge 
(%) 

Current 
(A) 

Voltage 
(V) 

Power 
(W) 

Temperature ( C) 

Steady 3.76 6.12 3.78 249.86 7.85 
Variability 0.82 7.74 2.65 397.53 1.97 
Afternoon  1.47 7.05 3.76 325.36 0.52 

 
The predicted RMSE for state of charge is less than 4% for each test, while voltage remains 
within 4V.  Current RMSE is up to about 8A for the high variability case.  These results show 
that SAM can be tailored to attempt to match a black-box hardware dispatch controller and still 
reasonably predict battery state-of-charge over fairly variable scenarios. While the current, 
voltage and power do not track perfectly, SAM captures general trends of the hardware behavior 
without knowing the exact algorithm implemented in the Outback controller.  Battery 
temperature was also measured during the test. The temperature probe for these tests was on the 
outside of the battery casing.  Most thermal properties of the battery were not reported, but were 
approximated using the values in Table 10. 

Table 10: Outback Thermal Properties 

Property Value 
Specific heat capacity 660 J/KgK 
Heat transfer coefficient 2.5 W/m2K 
Specific energy per mass 20 Wh/kg 
Specific energy per 
volume 

30 Wh/L 

 
The simulation scenarios began several hours into the year such that the simulated starting 
temperature changed considerably from the initial temperature set at the start of the test.  The 
steady oscillation scenario illustrates a large deviation in predicted temperature, resulting from 
the simulation undergoing months of high current charge cycles before reaching the period of 
interest.  More work could be done to tailor the controller to mitigate these high charge currents 
and reduce the battery temperature. 

7.3.2 Lithium-ion Results 
The lithium-ion system used in the hardware testing was an OutBack Radian Series 
Inverter/Charger coupled with a bank of four Enerdel EC4S6P lithium-ion batteries [15].  One 
string of four series batteries were used to achieve a nominal bank voltage of 57.6V and a 
capacity of 99Ah.  Table 11 details the system. 
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Table 11: Lithium-ion System 

Battery Enerdel EC4S6P 
Chemistry Lithium-Ion (Anode/Cathode unknown) 
Cells per unit 24 
Number of batteries 1 strings, 4 series per string (4 total) 
Nominal voltage 4 x 14.4 V (57.6V nominal) 
Bank Capacity 99Ah  
Bank Energy 5.7 kWh  

 
The test results using the Enerdel system were complicated due to the inverter controls.  In one 
test during battery discharge, after the batteries reached the minimum programmable voltage 
while grid-connected with no PV, the battery system was fully charged.  This behavior was 
originally not able to be mimicked by the manual dispatch controller within the simulation so the 
capability was added to offer additional configurability.  Other unanticipated differences such as 
the test PV charge controller not starting for low available power were able to be tailored within 
the simulation manual dispatch controller.   

Several charge and discharge tests were performed at varying power levels. Figure 19 shows the 
comparison between test and simulation for a 3200 W discharge test.  The simulation closely 
tracks the test state-of-charge, resulting in an RMSE of about 1%. 

  

Figure 19: Lithium-ion 3200W discharge test comparison 

The same three four-hour scenarios run for the lead-acid system were run for the lithium-ion 
system.  Figure 20 through Figure 23 shows the comparison for test and simulation results of the 
lithium-ion system under the three scenarios. 
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Figure 20: Lithium-ion steady oscillation 

comparison 

 
Figure 21: Lithium-ion high variability 

comparison 

 
Figure 22: Lithium-ion afternoon peak 

comparison 

 
Figure 23: Lithium-ion temperature comparison 

 
The residuals between simulated and measured values for the lithium-ion test system are shown 
in Table 12. 

 



28 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

Table 12: Lithium-ion Residuals 

 State of Charge 
(%) 

Current (A) Voltage 
(V) 

Power 
(W) 

Temperature 
( C) 

Steady 3.93 20.91 2.29 1119.75 2.08 
Variability 2.80 9.04 2.30 526.15 1.32 

Peak 8.89 9.43 3.31 460.25 1.04 
 
The battery SOC compares between simulated and test results with less than 10% RMSE, 
whereas the power residuals are higher, above 1kW in the steady oscillation test.  This power 
error is largely due to differences in the timing of when the recharge cycle from the controller 
was started, with less error seen during the discharge portions of the test. The results show that 
while the behavior of an actual battery system can be approximated by the manual dispatch 
controller, black box algorithms within the physical hardware introduce significant unknowns 
into the comparison which cannot always be easily mimicked.  Despite the challenges, the 
comparison provided valuable model validation and led to the introduction of additional features 
within the tool to better capture complex behavior. 
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8 Conclusion 
A generic battery model has been added to the free, publically available System Advisor Model, 
which allows users to consider lead-acid or lithium-ion batteries added to PV system.  The model 
predicts detailed parameters such as battery state-of-charge, terminal voltage, and capacity fade 
due to cycling and temperature.  A new lifetime simulation mode allows a user to run a 
simulation over the entire analysis period to predict variable capital costs associated with battery 
bank replacements.  Validations of the model against commercially available software packages 
showed key metrics within 5%.  Comparisons against data obtained from controlled hardware 
testing with multiple commercially available battery systems showed the SAM model was able 
to predict battery state of charge within 9% RMSE over six four-hour tests across lead-acid and 
lithium-ion systems.  This powerful new feature of SAM will enable further investigation into 
the important topic of the economic performance of PV coupled with battery storage. 
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9 Appendix 
Table 13: Variable units and description 

Variable Unit Description 
  Exponential zone amplitude 
  Area 
 ( )  Exponential zone time constant inverse 
  Capacity ratio 
 % Capacity percent for lifetime loss 
  Specific heat capacity 

 % Capacity percent for thermal loss 
 % Depth of discharge 

,   Maximum energy allowed to charge 
,   Maximum energy allowed to discharge 

,   Maximum energy to discharge by discharge percent 
  Energy 
  Accumulated energy charged 
  Accumulated energy discharged 

,   Ratio of maximum charge at discharge rate i to maximum 
charge at discharge rate j 

  Heat transfer coefficient 

,   Generic indices 
  Current 
  Rate constant 
  Runge kutta coefficients 
  Polarization voltage 
  Mass 
  Number of measurements 
 % Round trip efficiency 
 % Discharge percent 
  Power 
  Available charge 

,   Available charge at beginning of timestep 
  Bound charge 

,   Bound charge at beginning of timestep 
  Amount to discharge 

,   Original maximum charge 
  Maximum charge 
  Capacity at discharge rate equal to i hours 

  Total charge 
  Fully charged capacity from voltage curve 
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Variable Unit Description 
,%  Percent of charge removed at exponential point of voltage 

curve 
,%  Percent of charge removed at nominal point of voltage curve 

  Internal resistance 
  Root mean square error 

 % State of charge 
 % Maximum allowed state of charge 
 % Minimum allowed state of charge 

  Timestep 
  Discharge rate of  hours 

  Battery temperature 
  Room temperature 

  Battery constant voltage 
  Voltage 

  Voltage of battery bank 
  Voltage of individual cell 
  Voltage at exponential point of voltage curve 
  Fully charged cell voltage 
  Voltage at nominal point of voltage curve 
  Voltage at start of timestep 
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